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Abstract

In this study, a special class of nonlinear functional differential equations with mixed conditions
has been investigated with regard to Laguerre polynomials to find numerical solutions of these
problems. Those mathematical dynamics are of growing important in the natural sciences,
in engineering, in economics, in medical and life sciences, and in emerging space-time design
and research. Our novel numerical approach has been applied on the related problem and its
efficiency has been proved by error analysis on an illustrative example. The high efficiency
of our now method is document by a numerical example. The paper ends with a conclusion,
scientific discussions about structural frontiers, and an outlook to future investigations and
emerging applications.
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1 Introduction

Nonlinear functional differential equations are of an importance in applied sciences such as in the
area of biology, chemistry, physics and engineering, but also medicine, environmental, space-time,
neuro- and cognitive and information sciences. These types of differential equations provide a wide
range of applications in the areas which explain more complicated scenarios due to the nonlinear
functional terms in the equations [1], [2], [3]. Even though the general theory of the nonlinear func-
tional differential equations and fundamental results has been investigated, the numerical aspect
for the solution of the problems together with the mixed conditions still under investigation. The
problems of applied sciences are interdisciplinary and tools are developed with of an adaptable con-
cept [4]. Thus, in particular, such models are investigated with the help of numerical approaches.
Developing methods and improving approximation techniques for problem solution lead numeri-
cally efficient results with the help of these modifications [5]. Besides, numerical methods help for
obtaining more understanding of specifical mathematical models as well as their behaviours. Due
to this investigation a mathematical model for a physical or biological dynamics is leading a strong
way of understanding a real phenomena [6].

The numerical solutions of these problems which address these types of equations subject to the
mixed conditions have been studied by many authors. In particular, Tau method was introduced by
Ortiz [7], Lagrange interpolation and Chebyshev interpolation were presented by Rashed [8], Spec-
tral methods were given by Venturi et al. [9], stepsize Runge-Kutta method was described by Wang
et al. [10], and so on. Besides, block methods, Splines and Hermte methods, multistep methods,
Chebyshev series and the tau method, nonsmooth solutions, and the details of these methods with
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the applications on nonlinear functional differential equations were explained in the book of Cryer
[11]. Such methods are very beneficial for finding the solutions of nonlinear differential equations
which are also advantageous for giving understanding the models including these types of equations.
So, the numerical methods are also rewarding in order to build networks between different branches
of science (cf. [12]-[15]).

The organization of the manuscript as follows. In Section 2 mathematical model is introduced with
its details and together with the mixed conditions. In Section 3 the numerical method is explained
clearly. The convergence and accuracy of the method is presented in Section 4. In Section 5, a
numerical example is interpreted and discussed. Conclusion remarks, discussions about obstacles
of various kinds and how to overcome them by future research and design and discussion of the
results are summarized in Section 6. Consequently, an acknowledgment of the study is given in
Section 7 [16].

2 Mathematical model

In this section, the mathematical model is explained. In this work, we study on the numerical solu-
tions of a class of nonlinear functional differential equations which include second order nonlinear
terms in the form

m∑
k=0

Pk(x)y(k)(αkx+ βk(x)) +

2∑
p=0

p∑
q=0

Qpq(x)y(p)(x)y(q)(x) = g(x), x ∈ [a, b], (2.1)

with the mixed conditions

m−1∑
k=0

(akjy
(k)(a) + bkjy

(k)(b)) = λj , j = 0, 1, . . . ,m− 1, (2.2)

within Pk(x), Qpq(x), and g(x) are continuous functions in the interval 0 ≤ a ≤ x ≤ b < ∞ (see
[1]-[3]). Our goal is to acquire the approximate solution in truncated Laguerre series form:

y(x) ∼= yN (x) =

N∑
n=0

anLn(x), a ≤ x ≤ b, (2.3)

where an, n = 0, 1, . . . , N, are unknown coefficients, and the terms Ln(x) denote the Laguerre
polynomials [17], [18].

3 Numerical method

In this section, the numerical method is introduced. Primarily, the matrix relation of Eq. (2.3) is
described as

[y(x)] ∼= yN (x) = L(x)A = X(x)HA, (3.1)
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where

L(x) =
[
L0(x) L1(x) . . . LN (x)

]
,

X(x) =
[

1 x . . . xN
]
,

A =
[
a0 a1 . . . aN

]
and

H =



(−1)0

0!

(
0
0

)
(−1)0

0!

(
1
0

)
· · · (−1)0

0!

(
N
0

)
0 (−1)1

1!

(
1
1

)
· · · (−1)1

1!

(
N
1

)
...

...
. . .

...

0 0 · · · (−1)N

N !

(
N
N

)


.

(3.2)

Besides, the matrix form of y(k)(x) and together with the term in Eq. (2.1) include derivative is
defined also from Eq. (3.1) (cf. [17]-[19]) as

[y(k)(t)] = X(t)HBAi, (3.3)

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 . (3.4)

We also describe the matrix form of y(αkx + βk(x)) in Eq. (2.1) from Eqs. (3.1) and (3.2),
respectively, as

[y(αkx+ βk(x))] = X(αkx+ βk(x))HA = X(x)M(αk, βk(x))HA, (3.5)

and
[y(k)(αkx+ βk(x))] = X(αkx+ βk(x))B(k)HA = X(x)M(αk, βk(x))B(k)HA, (3.6)

where

M(αk, βk(x)) =



(
0
0

)
(αk)

0
(βk)

0

(
1
0

)
(αk)

0
(βk)

1 · · ·
(
N
0

)
(αk)

0
(βk)

N

0

(
1
1

)
(αk)

1
(βk)

0 · · ·
(
N
1

)
(αk)

1
(βk)

N−1

...
...

. . .
...

0 0 · · ·
(
N
N

)
(αk)

N
(βk)

0
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Moreover, the nonlinear terms of Eq. (2.1) is written in the matrix form by means of Eqs. (3.1)-(3.2)
(cf. [20]-[22]):

[y(0)(x)]2 = X(x)HX̄(x)H̄Ā,

[y(1)(x)][y(0)(x)] = X(x)HBX̄(x)H̄Ā,

[y(1)(x)]2 = X(x)HBX̄(x)H̄B̄Ā,

[y(2)(x)][y(1)(x)] = X(x)HB2X̄(x)H̄B̄Ā,

[y(2)(x)][y(0)(x)] = X(x)HB2X̄(x)H̄Ā,

[y(2)(x)]2 = X(x)HB2X̄(x)H̄B̄2Ā,

where

H̄ = diag [H,H, ...,H] ,

B̄ = diag [B,B, ...,B] ,

X̄ = diag [X,X, ...,X] ,

B̄2 = diag
[
B2,B2, ...,B2

]
,

Ā2 = diag [a0A, a1A, ..., aNA] .

Definition 3.1. The collocation points are defined by

xs = a+
b− a
N

s, s = 0, 1, . . . , N, (3.7)

and a ≤ x0 < x1 < . . . < xN ≤ b. Then we replace the collocation points of Eqs. (3.7) in Eq. (3.3)
[23]:

m∑
k=0

Pk(xs)y
(k)(αkxs + βk(xs)) +

2∑
p=0

p∑
q=0

Qpq(xs)y
(p)(xs)y

(q)(xs) = g(xs);

m∑
k=0

Pk(xs)X(xs)M(αk, βk(xs))B
kHA +

2∑
p=0

p∑
q=0

Qpq(xs)Y
(p,q)Ā = G,

m∑
k=0

PkX̄M̄αk,βk
B̄kHA +

2∑
p=0

p∑
q=0

QpqY
(p,q)Ā = G, (3.8)
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where

H̄∗ =


H
H
...
H
H

 , M̄(αk, βk(x)) = diag [M(αk, βk(x0)),M(αk, βk(x1)), ...,M(αk, βk(xN ))] ,

Y(0,0) = XHX̄H̄Ā, Y(1,0) = XHBX̄H̄Ā,

Y(1,1) = XHX̄H̄B̄Ā, Y(2,1) = XHB2X̄H̄B̄Ā,

Y(2,0) = XHB2X̄H̄Ā, Y(2,2) = XHB2X̄H̄B̄2Ā.

By identifying
m∑
k=0

PkX̄M̄αk,βk
B̄kH∗ = W

and
2∑
p=0

p∑
q=0

QpqY
(p,q) = V

in Eq. (3.8), we have the augmented matrix form:

WA + VĀ = G, [W; V : G]. (3.9)

Similarly, we apply the same procedure to the conditions which are defined in Eq. (2.2) and we get

m−1∑
k=0

(akjX(a)BkH + bkjX(b)BkH)A = [λj ], (3.10)

or
UA + 0∗Ā = λ.

In here, we have

U =
[
uj0 uj1 . . . ujN

]
j = 0, 1, 2, ...,m− 1,

λ =
[
λ0 λ1 . . . λN

]T
and

0∗ =
[

0 0 . . . 0
]T
.

In order to have unknown matrices A and Ā, we replace the last rows of the augmented matrix
of Eq. (3.9) by Eq. (3.10) and we get the required augmented matrix system as

[W̃; Ṽ : G̃]. (3.11)

By using Gaussian Elimination procedure, we have the solution of the system in Eq. (3.11) and we
find the Laguerre series solution by Eq. (2.3) (cf. [24]-[25]).
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4 Convergence and error analysis

In this section, the convergence of the method and accuracy estimation are described [26], [27]. First
we consider that the problem in (2.1)-(2.3) has a solution then its approximation yN (x), exists for
every N which is sufficiently large enough and it converges with its derivatives to the solution y(x).
The results on the solutions and their convergence have been already considered (see [3], [8], [10],
[28], [29]).

Here, the accuracy is checked for the obtained solutions by resulting equation.

Definition 4.1. The function yN (x) and the derivatives of the function and x = xj ∈ [0, T ] j =
1, 2, . . . are substituted in Eq. (2.1).

RN (xj) =

m∑
k=0

Pk(xj)y
(k)(αkxj + βk(xj)) +

2∑
p=0

p∑
q=0

Qpq(xj)y
(p)(xj)y

(q)(xj)− g(xj) ∼= 0. (4.1)

is defined as residual error function. We also describe it as RN (xj) ≤ 10−rj for any rj positive
number (see [30]-[31]).

Definition 4.2. Moreover, we define the absolute error function as

EN (xj) = |yN (xj)−
m∑
k=0

Pk(xj)y
(k)(αkxj + βk(xj)) +

2∑
p=0

p∑
q=0

Qpq(xj)y
(p)(xj)y

(q)(xj)− g(xj)| ∼= 0.

Theorem 4.1. (Upper Bound Error) Suppose that a ≤ x ≤ b and N ∈ N. Then we have the upper
bound error RN as∣∣∣∣∣

∫ b

a

RN (x)dx

∣∣∣∣∣ ≤
∫ b

a

|RN (x)| dx, a ≤ x ≤ b, N ∈ N.

Proof. By using the Mean Value Theorem∫ b

a

RN (x)dx = (b− a)RN (c), a < c < b,∣∣∣∣∣
∫ b

a

RN (x)dx

∣∣∣∣∣ = (b− a) |RN (c)| ,

so that

(b− a) |RN (c)| ≤
∫ b

a

|RN (x)| dx,

|RN (x)| ≤
∫ b
a
|RN (x)| dx
(b− a)

= RN .

q.e.d.
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5 Illustrative example

Here, we consider functional differential equation involving second-order nonlinear terms in a form
which includes the conditions as

y
′′
(x) + exp(x2)y(x− x2) + exp(x)y2(x) = exp(3x), x ∈ [0, 1], (5.1)

y(0) = 1 and y
′
(0) = 1, x ∈ [0, 1]. (5.2)

This functional differential equation with initial values has an exact solution as y = exp(x).

Comparison of the error functions are shown in Table 1. Besides, Figure 1 shows error func-
tions with specific collocation point and also for the different N values. In Table 2., the upper
bound error R̃N for N = 3, 6, 8 is shown.

Table 1. Absolute error comparison.
xj E3(xj) E6(xj) E8(xj)
0.0 0.563215E-5 0.689033E-6 0.365915E-7
0.5 0.513693E-4 0.725690E-5 0.650241E-6
1.0 0.630694E-4 0.945630E-5 0.678063E-6

Table 2. Upper bound error comparison.

R̃3 R̃6 R̃8

0.13215E-4 0.11533E-5 0.16659E-6

Figure 1. Error comparison for N = 3, 6, 8 of the test case.
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6 Conclusion and outlook

The present numerical method has been applied on the problem Eqs. (2.1)-(2.2) with N different
truncation limits where we see that the more efficient results are obtained for large enough N values.
Besides, the straightforward steps of the method provide accurate results in a short period of time.
The numerical technique therefore is applicable and recommended for the further applications in
different types of mathematical models (see [32], [33], [34], [35]). Formerly, it was applied in
dynamical systems (see [36], [37], [38]) and also still under preparation for the future adaptations (cf.
[39], [40]). On the other hand, emerging and future applications will address information and rumor
propagation (cf. [41]), on data science and artificial intelligence (cf. [42]), sustainable development
(cf. [43]) as well as cognitive and neurosciences (cf. [44], [45], [46]). These human related, mental
and generalize space-time studies are in a high need of a careful modeling, parametric and solution
of dynamics. Mathematical and especially structural obstacles to be overcome in future research
will be due our intended turn to stochastic functional and infinite-dimensional equations, and by
the inclusion of non-Euclidean, curved geometries. These extensions are typical for generalized
space-time design and research. Consequently, the technique is applicable with the help of some
modifications in order to be used in different research fields.
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[22] B. Gürbüz and M. Sezer, Laguerre polynomial solutions of a class of initial and boundary
value problems arising in science and engineering fields, Acta Physica Polonica A 130(2016)
1194–1197.



10 B. Gürbüz
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